login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299921
Squares that differ from a triangular number by 1.
4
0, 1, 4, 9, 16, 121, 324, 529, 4096, 11025, 17956, 139129, 374544, 609961, 4726276, 12723489, 20720704, 160554241, 432224100, 703893961, 5454117904, 14682895929, 23911673956, 185279454481, 498786237504, 812293020529, 6294047334436, 16944049179225, 27594051024016
OFFSET
1,3
COMMENTS
Squares k such that 8*k-7 or 8*k+9 is a square. - Robert Israel, Mar 18 2018
FORMULA
From Robert Israel, Mar 18 2018: (Start)
G.f.: x^2*(1+4*x+9*x^2-19*x^3-19*x^4+9*x^5+4*x^6+x^7)/(1-35*x^3+35*x^6-x^9).
a(n) = 35*a(n-3) - 35*a(n-6) + a(n-9). (End)
MAPLE
f:= gfun:-rectoproc({a(n+9) = 35*a(n+6) - 35*a(n+3) + a(n), seq(a(i)=[0, 1, 4, 9, 16, 121, 324, 529, 4096][i], i=1..9)}, a(n), remember):
map(f, [$1..50]); # Robert Israel, Mar 18 2018
MATHEMATICA
LinearRecurrence[{0, 0, 35, 0, 0, -35, 0, 0, 1}, {0, 1, 4, 9, 16, 121, 324, 529, 4096}, 50] (* Jean-François Alcover, Sep 17 2022 *)
PROG
(PARI) isok(n) = issquare(n) && (ispolygonal(n+1, 3) || ispolygonal(n-1, 3)); \\ Michel Marcus, Mar 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 17 2018
EXTENSIONS
More terms from Altug Alkan, Mar 17 2018
STATUS
approved