Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 17 2022 05:22:53
%S 0,1,4,9,16,121,324,529,4096,11025,17956,139129,374544,609961,4726276,
%T 12723489,20720704,160554241,432224100,703893961,5454117904,
%U 14682895929,23911673956,185279454481,498786237504,812293020529,6294047334436,16944049179225,27594051024016
%N Squares that differ from a triangular number by 1.
%C Squares k such that 8*k-7 or 8*k+9 is a square. - _Robert Israel_, Mar 18 2018
%H Robert Israel, <a href="/A299921/b299921.txt">Table of n, a(n) for n = 1..1959</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,35,0,0,-35,0,0,1).
%F From _Robert Israel_, Mar 18 2018: (Start)
%F G.f.: x^2*(1+4*x+9*x^2-19*x^3-19*x^4+9*x^5+4*x^6+x^7)/(1-35*x^3+35*x^6-x^9).
%F a(n) = 35*a(n-3) - 35*a(n-6) + a(n-9). (End)
%p f:= gfun:-rectoproc({a(n+9) = 35*a(n+6) - 35*a(n+3) + a(n), seq(a(i)=[0, 1, 4, 9, 16, 121, 324, 529, 4096][i],i=1..9)}, a(n), remember):
%p map(f, [$1..50]); # _Robert Israel_, Mar 18 2018
%t LinearRecurrence[{0, 0, 35, 0, 0, -35, 0, 0, 1}, {0, 1, 4, 9, 16, 121, 324, 529, 4096}, 50] (* _Jean-François Alcover_, Sep 17 2022 *)
%o (PARI) isok(n) = issquare(n) && (ispolygonal(n+1, 3) || ispolygonal(n-1, 3)); \\ _Michel Marcus_, Mar 17 2018
%Y Cf. A001110, A164080, A182334, A229131.
%K nonn
%O 1,3
%A _N. J. A. Sloane_, Mar 17 2018
%E More terms from _Altug Alkan_, Mar 17 2018