login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299870 The sum of the first n terms of the sequence is the concatenation of the first n digits of the sequence, and a(1) = 7. 2
7, 70, 693, 6936, 69363, 693624, 6936243, 69362433, 693624324, 6936243243, 69362432430, 693624324303, 6936243243024, 69362432430243, 693624324302427, 6936243243024273, 69362432430242733, 693624324302427324, 6936243243024273243, 69362432430242732426, 693624324302427324262, 6936243243024273242622 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequence starts with a(1) = 7 and is always extended with the smallest integer not yet present in the sequence and not leading to a contradiction.

LINKS

Jean-Marc Falcoz, Table of n, a(n) for n = 1..300

FORMULA

a(n) = c(n) - c(n-1), where c(n) = concatenation of the first n digits, c(n) ~ 0.77*10^n, a(n) ~ 0.69*10^n. See A300000 for the proof. - M. F. Hasler, Feb 22 2018

EXAMPLE

7 + 70 = 77 which is the concatenation of 7 and 7.

7 + 70 + 693 = 770 which is the concatenation of 7, 7 and 0.

7 + 70 + 693 + 6936 = 7706 which is the concatenation of 7, 7, 0 and 6.

From n = 3 on, a(n) can be computed directly as c(n) - c(n-1), cf. formula: a(3) = 770 - 77 = 693, a(4) = 7706 - 770 = 6936, etc. - M. F. Hasler, Feb 22 2018

PROG

(PARI) a(n, show=1, a=7, c=a, d=[a])={for(n=2, n, show&&print1(a", "); a=-c+c=c*10+d[1]; d=concat(d[^1], if(n>2, digits(a)))); a} \\ M. F. Hasler, Feb 22 2018

CROSSREFS

A300000 is the lexicographically first sequence of this type, with a(1) = 1.

Cf. A299865, ..., A299872 for variants with a(1) = 2, ..., 9.

Sequence in context: A201065 A043034 A015251 * A196662 A249750 A144848

Adjacent sequences:  A299867 A299868 A299869 * A299871 A299872 A299873

KEYWORD

nonn,base

AUTHOR

Eric Angelini and Jean-Marc Falcoz, Feb 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 18:24 EDT 2022. Contains 357237 sequences. (Running on oeis4.)