login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A299787
Maximum size of a main class for diagonal Latin squares of order n.
4
1, 0, 0, 48, 480, 69120, 967680, 61931520, 557383680, 55738368000, 613122048000, 88289574912000, 1147764473856000, 224961836875776000, 3374427553136640000
OFFSET
1,4
COMMENTS
a(n) <= 2^m * m! * 4 * n!, where m = floor(n/2).
It seems that a(n) = 2^m * m! * 4 * n! for all n>6. - Eduard I. Vatutin, Jun 08 2020
0 <= A299785(n) <= a(n). - Eduard I. Vatutin, Jul 06 2020
LINKS
E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Supercomputing Days Russia 2018, Moscow, Moscow State University, 2018, pp. 933-942.
E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Communications in Computer and Information Science. Vol. 965. Springer, 2018. pp. 578-586.
Eduard I. Vatutin, Estimating the maximal size of main class for diagonal Latin squares of orders 9-15, Medical-Ecological and Information Technologies - 2020, Part 2, 2020, pp. 57-62 (in Russian).
FORMULA
a(n) = A299784(n) * n!.
From Eduard I. Vatutin, May 31 2021: (Start)
a(n) = A299785(n) for 1 <= n <= 5.
a(6) = A299785(6)*3.
a(7) = A299785(7)*6.
a(8) = A299785(8)*16.
a(9) = A299785(9)*32.
a(10) = A299785(10)*2.
a(11) = A299785(11)*10.
a(12) = A299785(12)*4.
a(13) = A299785(13)*24. (End)
EXAMPLE
From Eduard I. Vatutin, May 31 2021: (Start)
The following DLS of order 9 has a main class with cardinality 1536*9! = 557383680:
0 1 2 3 4 5 6 7 8
1 2 0 4 8 6 5 3 7
7 4 5 8 0 3 2 6 1
5 8 7 6 1 0 3 2 4
8 0 3 2 7 1 4 5 6
3 7 8 5 6 4 1 0 2
6 3 1 7 5 2 8 4 0
2 6 4 0 3 8 7 1 5
4 5 6 1 2 7 0 8 3
The following DLS of order 10 has a main class with cardinality 15360*10! = 55738368000:
0 1 2 3 4 5 6 7 8 9
1 2 0 4 5 3 9 8 6 7
3 5 6 1 8 7 4 0 9 2
9 4 7 8 3 2 1 6 0 5
2 7 3 0 9 8 5 1 4 6
6 8 5 9 2 4 7 3 1 0
4 6 9 7 0 1 3 2 5 8
7 0 4 6 1 9 8 5 2 3
8 3 1 5 6 0 2 9 7 4
5 9 8 2 7 6 0 4 3 1
(End)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Eduard I. Vatutin, Jan 21 2019
EXTENSIONS
a(9)-a(10) from Eduard I. Vatutin, Mar 15 2020
a(11)-a(15) from Eduard I. Vatutin, Jun 08 2020
STATUS
approved