login
A299785
Minimum size of a main class for diagonal Latin squares of order n.
3
1, 0, 0, 48, 480, 23040, 161280, 3870720
OFFSET
1,4
COMMENTS
0 <= a(n) <= A299787(n). - Eduard I. Vatutin, Jun 08 2020
a(9) <= 17418240; a(10) <= 27869184000. - Eduard I. Vatutin, Oct 05 2020
a(11) <= 61312204800, a(12) <= 22072393728000, a(13) <= 47823519744000. - Eduard I. Vatutin, May 31 2021
LINKS
FORMULA
a(n) = A299783(n) * n!.
From Eduard I. Vatutin, May 31 2021: (Start)
a(n) = A299787(n) for 1 <= n <= 5.
a(6) = A299787(6)/3.
a(7) = A299787(7)/6.
a(8) = A299787(8)/16.
a(9) = A299787(9)/32.
a(10) = A299787(10)/2.
a(11) = A299787(11)/10.
a(12) = A299787(12)/4.
a(13) = A299787(13)/24. (End)
EXAMPLE
From Eduard I. Vatutin, Oct 05 2020: (Start)
The following DLS of order 9 has a main class with cardinality 48*9! = 17418240:
0 1 2 3 4 5 6 7 8
2 4 3 0 7 6 8 1 5
6 2 8 5 3 4 7 0 1
4 6 7 1 8 2 3 5 0
1 5 4 7 6 0 2 8 3
7 8 1 4 5 3 0 6 2
3 7 0 2 1 8 5 4 6
8 3 5 6 0 7 1 2 4
5 0 6 8 2 1 4 3 7
The following DLS of order 10 has a main class with cardinality 7680*10! = 27869184000:
0 1 2 3 4 5 6 7 8 9
1 2 0 4 3 6 5 9 7 8
2 0 3 5 8 1 4 6 9 7
4 6 9 7 1 8 2 0 3 5
9 7 8 6 5 4 3 1 2 0
3 4 7 8 0 9 1 2 5 6
6 9 4 1 7 2 8 5 0 3
7 8 5 0 6 3 9 4 1 2
5 3 1 9 2 7 0 8 6 4
8 5 6 2 9 0 7 3 4 1
(End)
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Jan 21 2019
STATUS
approved