OFFSET
1,4
COMMENTS
0 <= a(n) <= A299787(n). - Eduard I. Vatutin, Jun 08 2020
a(9) <= 17418240; a(10) <= 27869184000. - Eduard I. Vatutin, Oct 05 2020
a(11) <= 61312204800, a(12) <= 22072393728000, a(13) <= 47823519744000. - Eduard I. Vatutin, May 31 2021
LINKS
E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
E. I. Vatutin, About the upper bound of the minimal size of main class for diagonal Latin squares of order 9 (in Russian).
E. I. Vatutin, About the upper bound of the minimal size of main class for diagonal Latin squares of order 10 (in Russian).
E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Supercomputing Days Russia 2018, Moscow, Moscow State University, 2018, pp. 933-942.
E. Vatutin, A. Belyshev, S. Kochemazov, O. Zaikin, N. Nikitina, Enumeration of isotopy classes of diagonal Latin squares of small order using volunteer computing, Communications in Computer and Information Science. Vol. 965. Springer, 2018. pp. 578-586.
Eduard I. Vatutin, About the relationship between the minimal and maximal cardinality of main classes for diagonal Latin squares (in Russian).
Eduard I. Vatutin, Proving list (best known examples).
FORMULA
EXAMPLE
From Eduard I. Vatutin, Oct 05 2020: (Start)
The following DLS of order 9 has a main class with cardinality 48*9! = 17418240:
0 1 2 3 4 5 6 7 8
2 4 3 0 7 6 8 1 5
6 2 8 5 3 4 7 0 1
4 6 7 1 8 2 3 5 0
1 5 4 7 6 0 2 8 3
7 8 1 4 5 3 0 6 2
3 7 0 2 1 8 5 4 6
8 3 5 6 0 7 1 2 4
5 0 6 8 2 1 4 3 7
The following DLS of order 10 has a main class with cardinality 7680*10! = 27869184000:
0 1 2 3 4 5 6 7 8 9
1 2 0 4 3 6 5 9 7 8
2 0 3 5 8 1 4 6 9 7
4 6 9 7 1 8 2 0 3 5
9 7 8 6 5 4 3 1 2 0
3 4 7 8 0 9 1 2 5 6
6 9 4 1 7 2 8 5 0 3
7 8 5 0 6 3 9 4 1 2
5 3 1 9 2 7 0 8 6 4
8 5 6 2 9 0 7 3 4 1
(End)
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Jan 21 2019
STATUS
approved