login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299730
Irregular triangle read by rows: T(n,k) is the number of partitions of 3*n having exactly k prime parts; n >= 0, 0 <= k <= floor( 3*n / 2 ).
3
1, 1, 2, 3, 4, 3, 1, 6, 9, 8, 5, 2, 12, 20, 19, 14, 8, 3, 1, 19, 41, 42, 34, 21, 12, 5, 2, 37, 72, 88, 74, 53, 31, 18, 8, 3, 1, 58, 136, 161, 155, 115, 77, 46, 25, 12, 5, 2, 102, 226, 307, 291, 241, 168, 110, 65, 35, 18, 8, 3, 1
OFFSET
0,3
COMMENTS
Sequence of row lengths = A001651.
LINKS
FORMULA
T(n,k) = A222656(3n,k).
EXAMPLE
The irregular triangle T(n, k) begins:
3n\k 0 1 2 3 4 5 6 7 8 9
0: 1
3: 1 2
6: 3 4 3 1
9: 6 9 8 5 2
12: 12 20 19 14 8 3 1
15: 19 41 42 34 21 12 5 2
18: 37 72 88 74 53 31 18 8 3 1
MAPLE
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, 1,
add(b(n-i*j, i-1)*`if`(isprime(i), x^j, 1), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(3*n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Mar 03 2018
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, 1,
Sum[b[n - i*j, i - 1]*If[PrimeQ[i], x^j, 1], {j, 0, n/i}]]];
T[n_] := CoefficientList[b[3n, 3n], x];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Mar 08 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
J. Stauduhar, Feb 17 2018
STATUS
approved