login
A299567
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
6
0, 1, 1, 1, 4, 1, 2, 18, 18, 2, 3, 52, 57, 52, 3, 5, 174, 222, 222, 174, 5, 8, 604, 808, 965, 808, 604, 8, 13, 2048, 3124, 4342, 4342, 3124, 2048, 13, 21, 6948, 11807, 20044, 24588, 20044, 11807, 6948, 21, 34, 23652, 44846, 91193, 140401, 140401, 91193, 44846
OFFSET
1,5
COMMENTS
Table starts
..0.....1......1.......2........3.........5..........8..........13...........21
..1.....4.....18......52......174.......604.......2048........6948........23652
..1....18.....57.....222......808......3124......11807.......44846.......170350
..2....52....222.....965.....4342.....20044......91193......417122......1909312
..3...174....808....4342....24588....140401.....792454.....4505710.....25597272
..5...604...3124...20044...140401....997212....6974944....49037025....345316723
..8..2048..11807...91193...792454...6974944...60087975...521019836...4532637754
.13..6948..44846..417122..4505710..49037025..521019836..5576669621..59935963606
.21.23652.170350.1909312.25597272.345316723.4532637754.59935963606.796438022548
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 19] for n>20
k=4: [order 67] for n>70
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..1. .1..1..1..1. .0..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..1. .1..1..1..1. .0..0..0..1
..0..0..1..0. .0..0..0..0. .0..0..0..1. .1..1..1..1. .1..1..1..1
..1..1..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1. .1..0..0..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297945.
Column 3 is A298765.
Sequence in context: A298389 A299307 A298770 * A299465 A300108 A298280
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 12 2018
STATUS
approved