login
A298770
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 4, 1, 2, 18, 18, 2, 3, 52, 57, 52, 3, 5, 174, 222, 222, 174, 5, 8, 604, 808, 957, 808, 604, 8, 13, 2048, 3124, 4288, 4288, 3124, 2048, 13, 21, 6948, 11807, 19722, 23932, 19722, 11807, 6948, 21, 34, 23652, 44846, 89295, 135243, 135243, 89295, 44846
OFFSET
1,5
COMMENTS
Table starts
..0.....1......1.......2........3.........5..........8..........13...........21
..1.....4.....18......52......174.......604.......2048........6948........23652
..1....18.....57.....222......808......3124......11807.......44846.......170350
..2....52....222.....957.....4288.....19722......89295......406426......1851746
..3...174....808....4288....23932....135243.....754713.....4245549.....23848195
..5...604...3124...19722...135243....942727....6456802....44530673....307427453
..8..2048..11807...89295...754713...6456802...53950338...454801194...3847185453
.13..6948..44846..406426..4245549..44530673..454801194..4698205702..48730992802
.21.23652.170350.1851746.23848195.307427453.3847185453.48730992802.620363350692
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 19] for n>20
k=4: [order 66] for n>69
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..1..1..1..0. .1..1..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0
..1..1..1..0. .0..0..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..1
..1..1..1..0. .0..0..0..0. .1..1..1..1. .1..1..1..1. .1..1..1..1
..1..1..1..0. .0..0..0..0. .0..0..0..1. .1..1..1..1. .1..1..1..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297945.
Sequence in context: A298560 A298389 A299307 * A299567 A299465 A300108
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 26 2018
STATUS
approved