login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299465
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 4, 1, 2, 18, 18, 2, 3, 52, 57, 52, 3, 5, 174, 226, 226, 174, 5, 8, 604, 861, 1013, 861, 604, 8, 13, 2048, 3432, 5294, 5294, 3432, 2048, 13, 21, 6948, 13268, 27639, 52002, 27639, 13268, 6948, 21, 34, 23652, 51790, 139226, 402789, 402789, 139226, 51790
OFFSET
1,5
COMMENTS
Table starts
..0.....1......1.......2.........3..........5............8............13
..1.....4.....18......52.......174........604.........2048..........6948
..1....18.....57.....226.......861.......3432........13268.........51790
..2....52....226....1013......5294......27639.......139226........713421
..3...174....861....5294.....52002.....402789......2991315......25096585
..5...604...3432...27639....402789....4175049.....41279802.....478753977
..8..2048..13268..139226...2991315...41279802....546467591....8711452672
.13..6948..51790..713421..25096585..478753977...8711452672..209501211322
.21.23652.202533.3674765.203284013.5290010417.130278485534.4519722020986
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 20] for n>21
k=4: [order 69] for n>71
EXAMPLE
Some solutions for n=5 k=6
..0..0..1..1..0..1. .0..0..1..1..1..1. .0..0..1..1..1..1. .0..1..1..1..1..0
..0..1..0..1..0..1. .0..0..1..1..1..1. .0..1..0..0..1..0. .0..1..0..0..0..0
..1..0..0..1..0..1. .1..1..1..0..0..0. .1..0..1..1..1..0. .0..1..0..0..0..1
..0..1..0..1..0..1. .1..0..1..1..1..0. .0..1..1..1..0..0. .1..0..0..0..0..1
..1..0..1..1..0..0. .1..0..0..0..0..1. .1..0..1..0..1..1. .0..0..1..1..0..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297945.
Sequence in context: A299307 A298770 A299567 * A300108 A298280 A299142
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 10 2018
STATUS
approved