login
A299547
Solution a( ) of the complementary equation a(n) = b(n-1) + b(n-2) + ... + b(0), where a(0) = 1, a(1) = 2, a(2) = 3; see Comments.
2
1, 2, 3, 12, 18, 25, 33, 42, 52, 63, 76, 90, 105, 121, 138, 157, 177, 198, 220, 243, 267, 293, 320, 348, 377, 407, 438, 470, 504, 539, 575, 612, 650, 689, 729, 770, 813, 857, 902, 948, 995, 1043, 1092, 1142, 1193, 1246, 1300, 1355, 1411, 1468, 1526, 1585
OFFSET
0,2
COMMENTS
From the Bode-Harborth-Kimberling link:
a(n) = b(n-1) + b(n-2) + ... + b(0) for n > 3;
b(0) = least positive integer not in {a(0),a(1),a(2)};
b(n) = least positive integer not in {a(0),...,a(n),b(0),...,b(n-1)} for n > 1.
Note that (b(n)) is strictly increasing and is the complement of (a(n)).
See A022424 for a guide to related sequences.
LINKS
J-P. Bode, H. Harborth, C. Kimberling, Complementary Fibonacci sequences, Fibonacci Quarterly 45 (2007), 254-264.
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4;
a[n_] := a[n] = Sum[b[k], {k, 0, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 100}] (* A299547 *)
CROSSREFS
Cf. A022424.
Sequence in context: A112976 A100570 A056700 * A140989 A281086 A355847
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 01 2018
EXTENSIONS
Definition corrected by Georg Fischer, Sep 28 2020
STATUS
approved