login
A299482
Numbers m such that in the diagram of the symmetric representation of sigma(k) described in A237593 there is no Dyck path that contains the point (m,m), where both k and m are positive integers.
1
4, 8, 10, 14, 16, 19, 21, 24, 27, 29, 31, 33, 37, 39, 41, 43, 46, 48, 50, 51, 53, 55, 58, 60, 62, 64, 66, 69, 72, 74, 76, 78, 80, 82, 83, 84, 87, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 114, 116, 119, 121, 123, 124, 125, 127, 129, 131, 133, 135, 138, 141, 143, 145, 147, 149, 151, 153
OFFSET
1,1
COMMENTS
Indices of the rows that contain a zero in the triangle A279385.
a(n) is the index of the n-th zero in A259179; i.e. A259179(a(n)) = 0. - Hartmut F. W. Hoft, Aug 07 2020
MATHEMATICA
a240542[n_] := Sum[(-1)^(k+1)*Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}]
a299482[n_] := Module[{t=Table[0, n], k=1, d=1}, While[d<=n, t[[d]]+=1; d=a240542[++k]]; Flatten[Position[t, 0]]]
a299482[153] (* Hartmut F. W. Hoft, Aug 07 2020 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Feb 19 2018
STATUS
approved