OFFSET
1,2
FORMULA
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x*exp(Sum_{k>=1} Sum_{n>=1} (1 + (-1)^(k+1))*a(n)^k*x^(n*k)/k).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 22*x^4 + 86*x^5 + ... = x * ((1 + x) * (1 + 2*x^2) * (1 + 6*x^3) * (1 + 22*x^4) * (1 + 86*x^5) * ...) / ((1 - x) * (1 - 2*x^2) * (1 - 6*x^3) * (1 - 22*x^4) * (1 - 86*x^5) * ...).
MATHEMATICA
a[n_] := a[n] = SeriesCoefficient[x Product[(1 + a[k] x^k)/(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 26}]
a[n_] := a[n] = SeriesCoefficient[x Exp[Sum[Sum[(1 + (-1)^(k + 1)) a[j]^k x^(j k)/k, {j, 1, n - 1}], {k, 1, n - 1}]], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 26}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 18 2018
STATUS
approved