The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073075 Generating function satisfies A(x) = exp(2*A(x)*x + 2*A(x^3)*x^3/3 + 2*A(x^5)*x^5/5 + 2*A(x^7)*x^7/7 +...). 9
 1, 2, 6, 22, 86, 358, 1554, 6950, 31822, 148434, 702802, 3369046, 16319050, 79749294, 392711090, 1946732854, 9706813790, 48651303118, 244972282734, 1238621756174, 6286144819506, 32011282859598, 163517409895602, 837631563577814, 4301996341244810 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Which kind of trees is counted by this sequence (see formulas)? - Joerg Arndt, Mar 04 2015 LINKS FORMULA G.f.: A(x) = exp(sum_{n>=0} 2*A(x^(2n+1))*x^(2n+1)/(2n+1)), A(0)=1, where A(x) = 1 + 2x + 6x^2 + 22x^3 + 86x^4 + 358x^5 +... Let b(n) = a(n-1) for n>=1, then sum(n>=1, b(n)*x^n ) = x * prod(n>=1, ((1+x^n)/(1-x^n))^b(n) ); compare to A000081, A004111, and A115593. - Joerg Arndt, Mar 04 2015 MAPLE spec := [S, {B=Set(S), C=PowerSet(S), S=Prod(Z, B, C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=1..20); # Vladeta Jovovic, Feb 10 2005 MATHEMATICA m = 23; A[_] = 0; Do[A[x_] = Exp[Sum[2 A[x^k] x^k/k, {k, 1, m, 2}]] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *) CROSSREFS Sequence in context: A150256 A150257 A150258 * A299021 A153475 A150259 Adjacent sequences:  A073072 A073073 A073074 * A073076 A073077 A073078 KEYWORD easy,nonn AUTHOR Paul D. Hanna, Aug 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 06:16 EDT 2021. Contains 347664 sequences. (Running on oeis4.)