OFFSET
0,2
COMMENTS
Which kind of trees is counted by this sequence (see formulas)? - Joerg Arndt, Mar 04 2015
FORMULA
G.f.: A(x) = exp(sum_{n>=0} 2*A(x^(2n+1))*x^(2n+1)/(2n+1)), A(0)=1, where A(x) = 1 + 2x + 6x^2 + 22x^3 + 86x^4 + 358x^5 +...
Let b(n) = a(n-1) for n>=1, then sum(n>=1, b(n)*x^n ) = x * prod(n>=1, ((1+x^n)/(1-x^n))^b(n) ); compare to A000081, A004111, and A115593. - Joerg Arndt, Mar 04 2015
MAPLE
spec := [S, {B=Set(S), C=PowerSet(S), S=Prod(Z, B, C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=1..20); # Vladeta Jovovic, Feb 10 2005
MATHEMATICA
m = 23; A[_] = 0;
Do[A[x_] = Exp[Sum[2 A[x^k] x^k/k, {k, 1, m, 2}]] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Aug 17 2002
STATUS
approved