login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073075
Generating function satisfies A(x) = exp(2*A(x)*x + 2*A(x^3)*x^3/3 + 2*A(x^5)*x^5/5 + 2*A(x^7)*x^7/7 +...).
9
1, 2, 6, 22, 86, 358, 1554, 6950, 31822, 148434, 702802, 3369046, 16319050, 79749294, 392711090, 1946732854, 9706813790, 48651303118, 244972282734, 1238621756174, 6286144819506, 32011282859598, 163517409895602, 837631563577814, 4301996341244810
OFFSET
0,2
COMMENTS
Which kind of trees is counted by this sequence (see formulas)? - Joerg Arndt, Mar 04 2015
FORMULA
G.f.: A(x) = exp(sum_{n>=0} 2*A(x^(2n+1))*x^(2n+1)/(2n+1)), A(0)=1, where A(x) = 1 + 2x + 6x^2 + 22x^3 + 86x^4 + 358x^5 +...
Let b(n) = a(n-1) for n>=1, then sum(n>=1, b(n)*x^n ) = x * prod(n>=1, ((1+x^n)/(1-x^n))^b(n) ); compare to A000081, A004111, and A115593. - Joerg Arndt, Mar 04 2015
MAPLE
spec := [S, {B=Set(S), C=PowerSet(S), S=Prod(Z, B, C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=1..20); # Vladeta Jovovic, Feb 10 2005
MATHEMATICA
m = 23; A[_] = 0;
Do[A[x_] = Exp[Sum[2 A[x^k] x^k/k, {k, 1, m, 2}]] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *)
CROSSREFS
Sequence in context: A150256 A150257 A150258 * A299021 A153475 A150259
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Aug 17 2002
STATUS
approved