login
A073073
Numbers m such that the minimal value of abs(2^m - 3^x) > 0 is prime (i.e., m such that A064024(m) is prime).
0
4, 5, 6, 7, 8, 11, 14, 21, 25, 89, 97, 110, 116, 121, 177, 235, 294, 784, 1039, 1454, 1629, 3460, 5611, 6174, 7133, 10922, 12287, 12581, 16311
OFFSET
1,1
MATHEMATICA
Do[k = 0; While[Abs[2^n - 3^k] > Abs[2^n - 3^(k + 1)], k++ ]; If[PrimeQ[Abs[2^n - 3^k]], Print[n]], {n, 1, 4000}] (* Stefan Steinerberger, Jan 22 2006 *)
CROSSREFS
Cf. A064024.
Sequence in context: A129740 A161428 A285429 * A213525 A047567 A050038
KEYWORD
nonn,more
AUTHOR
Benoit Cloitre, Aug 17 2002
EXTENSIONS
a(19)-a(22) from Stefan Steinerberger, Jan 22 2006
a(23)-a(29) from Jinyuan Wang, Apr 05 2020
STATUS
approved