OFFSET
1,2
COMMENTS
The number of consecutive primes is 1, 3, 4, 7, 8, 9, 10, 11.
LINKS
Eric Weisstein's World of Mathematics, Centered Polygonal Number
Wikipedia, Centered polygonal number
EXAMPLE
The first 8 centered 10-gonal numbers (A062786) are 1, 11, 31, 61, 101, 151, 211, 281, and all of them except for 1 are primes (A090562). The previous record is 4 primes, for centered hexagonal numbers 7, 19, 37, 61 (A003215), therefore 6 and 10 are in the sequence.
From Michel Marcus, Feb 12 2018: (Start)
Number of primes after the 1
1: 1 2 4 7 11 16 ... : 1 <- record
2: 1 3 7 13 21 31 ... : 3 <- record
3: 1 4 10 19 31 46 ... : 0
4: 1 5 13 25 41 61 ... : 2
5: 1 6 16 31 51 76 ... : 0
6: 1 7 19 37 61 91 ... : 4 <- record
....
(End)
MATHEMATICA
f[n_, k_] := k*n (n - 1)/2 + 1; a[k_] := Module[{n = 2}, While[PrimeQ[f[n, k]], n++]; n - 2]; am = 0; seq={}; Do[a1 = a[n]; If[a1 > am, AppendTo[seq, n]; am = a1], {n, 1, 10^7}]; seq
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jan 26 2018
STATUS
approved