OFFSET
1,1
COMMENTS
Numbers k such that both k and 2k+1 are Poulet numbers are listed in A303447.
If p is a prime such that 2*p-1 is also a prime (A005382) and k = (2^(2*p-1)+1)/3 and 2*k-1 are both composites, then k is a term of this sequence (Rotkiewicz, 2000). - Amiram Eldar, Nov 09 2023
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..3031 (terms below 2^64)
Andrzej Rotkiewicz, Arithmetic progressions formed by pseudoprimes, Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 8, No. 1 (2000), pp. 61-74.
MATHEMATICA
s = Import["b001567.txt", "Data"][[All, -1]]; n = Length[s];
aQ[n_] := ! PrimeQ[n] && PowerMod[2, (n - 1), n] == 1;
a = {}; Do[p = 2*s[[k]] - 1; If[aQ[p], AppendTo[a, s[[k]]]], {k, 1, n}]; a (* using the b-File from A001567 *)
PROG
(PARI) isP(n) = (Mod(2, n)^n==2) && !isprime(n) && (n>1);
isok(n) = isP(n) && isP(2*n-1); \\ Michel Marcus, Mar 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jan 26 2018
STATUS
approved