login
A298445
Triangle T(n,k) read by rows: number of n-node simple graphs with rectilinear crossing number k (k=0..A014540(n)).
1
1, 2, 4, 11, 33, 1, 142, 12, 1, 1, 822, 162, 39, 16, 1, 2, 1, 0, 0, 1, 6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1, 79853
OFFSET
1,2
COMMENTS
Computed up to n=8 using data provided by Geoffrey Exoo. (There appear to be some problems with n=9 data.)
LINKS
Eric Weisstein's World of Mathematics, Rectilinear Crossing Number
Eric Weisstein's World of Mathematics, Simple Graph
FORMULA
T(n,0) = A005470(n).
T(n,1) = A307071(n).
kmax(n) = A014540(n).
T(n,kmax(n)) = 1 for n > 4.
Sum_{k=0..kmax(n)} T(n,k) = A000088(n).
EXAMPLE
Triangle begins:
1
2
4
11
33, 1
142, 12, 1, 1
822, 162, 39, 16, 1, 2, 1, 0, 0, 1
6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1
CROSSREFS
Cf. A014540 (rectilinear crossing number for K_n).
Cf. A298446 (counts for simple connected graphs).
Cf. A307071 (number of simple graphs with crossing number 1).
Sequence in context: A123449 A123404 A178925 * A294224 A296270 A123439
KEYWORD
nonn,tabf
AUTHOR
Eric W. Weisstein, Jan 19 2018
EXTENSIONS
Corrected by Eric W. Weisstein, Mar 28 2019
STATUS
approved