login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298444
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 11, 2, 1, 1, 5, 2, 2, 5, 1, 1, 9, 27, 7, 27, 9, 1, 1, 22, 36, 34, 34, 36, 22, 1, 1, 45, 86, 105, 214, 105, 86, 45, 1, 1, 101, 162, 406, 1270, 1270, 406, 162, 101, 1, 1, 218, 368, 1504, 3963, 10681, 3963, 1504, 368, 218, 1, 1, 477, 727, 6183
OFFSET
1,12
COMMENTS
Table starts
.1...1...1....1......1.......1.........1..........1............1.............1
.1...1...1....2......5.......9........22.........45..........101...........218
.1...1..11....2.....27......36........86........162..........368...........727
.1...2...2....7.....34.....105.......406.......1504.........6183.........25013
.1...5..27...34....214....1270......3963......22290.......109407........575051
.1...9..36..105...1270...10681.....72509.....692536......6184710......57152783
.1..22..86..406...3963...72509....610525....9392919....119508030....1732328018
.1..45.162.1504..22290..692536...9392919..240137045...5101146140..120394407026
.1.101.368.6183.109407.6184710.119508030.5101146140.176490627544.6773268608554
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -2*a(n-4) for n>5
k=3: [order 12] for n>13
k=4: [order 34] for n>36
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..1. .0..1..1..1. .0..0..1..1. .0..0..1..1
..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..1..1. .0..0..1..1
..1..0..1..0. .0..0..1..0. .1..1..0..0. .1..0..1..1. .0..1..1..1
..1..1..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
..0..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..0..0. .0..0..1..1
CROSSREFS
Column 2 is A052962(n-2).
Sequence in context: A353877 A250221 A365610 * A224480 A037299 A329941
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 19 2018
STATUS
approved