login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014540 Rectilinear crossing number of complete graph on n nodes. 8
0, 0, 0, 0, 1, 3, 9, 19, 36, 62, 102, 153, 229, 324, 447, 603, 798, 1029, 1318, 1657, 2055, 2528, 3077, 3699, 4430, 5250, 6180 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
The values a(19) and a(21) were obtained by Aichholzer et al. in 2006. The value a(18) is claimed by the Rectilinear Crossing Number project after months of distributed computing. This was confirmed by Abrego et al., they also found the values a(20) and a(22) to a(27). The next unknown entry, a(28), is either 7233 or 7234. - Bernardo M. Abrego (bernardo.abrego(AT)csun.edu), May 05 2008
REFERENCES
M. Gardner, Crossing Numbers. Ch. 11 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, 1986.
C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.
LINKS
B. M. Abrego, S. Fernandez-Merchant, J. Leaños and G. Salazar, The maximum number of halving lines and the rectilinear crossing number of K_n for n <= 27, Electronic Notes in Discrete Mathematics, 30 (2008), 261-266.
O. Aichholzer, F. Aurenhammer and H. Krasser, Progress on rectilinear crossing numbers. [Broken link]
O. Aichholzer, F. Aurenhammer and H. Krasser, Progress on rectilinear crossing numbers, Technical report, IGI-TU Graz, Austria, 2001.
O. Aichholzer, F. Aurenhammer and H. Krasser, On the Rectilinear Crossing Number [Broken link]
O. Aichholzer, J. Garcia, D. Orden, P. Ramos, New lower bounds for the number of <= k-edges and the rectilinear crossing number of K_n, Discrete & Computational Geometry 38 (2007), 1-14.
O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001. [Broken link]
D. Bienstock and N. Dean, Bounds for rectilinear crossing numbers, J. Graph Theory 17 (1993) 333-348
A. Brodsky, S. Durocher and E. Gethner, The Rectilinear Crossing Number of K_{10} is 62, The Electronic J. Combin, #R23, 2001.
A. Brodsky, S. Durocher and E. Gethner, Toward the rectilinear crossing number of K_n: new drawings, upper bounds, and asymptotics, Discrete Math. 262 (2003), 59-77.
D. Garber, The Orchard crossing number of an abstract graph, arXiv:math/0303317 [math.CO], 2003-2009.
H. F. Jensen, An Upper Bound for the Rectilinear Crossing Number of the Complete Graph, J. Comb. Th. Ser. B 10, 212-216, 1971.
Eric Weisstein's World of Mathematics, Graph Crossing Number
Eric Weisstein's World of Mathematics, Rectilinear Crossing Number
Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture
CROSSREFS
Sequence in context: A325666 A147174 A147158 * A293058 A294367 A339495
KEYWORD
nonn,nice,hard,more
AUTHOR
EXTENSIONS
102 from Oswin Aichholzer (oswin.aichholzer(AT)tugraz.at), Aug 14 2001
153 from Hannes Krasser (hkrasser(AT)igi.tu-graz.ac.at), Sep 17 2001
More terms from Eric W. Weisstein, Nov 30 2006
More terms from Bernardo M. Abrego (bernardo.abrego(AT)csun.edu), May 05 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 15:47 EDT 2024. Contains 375938 sequences. (Running on oeis4.)