OFFSET
1,1
COMMENTS
a(6) > 1622184 if it exists (see A001605). - Chai Wah Wu, Jan 23 2018
FORMULA
From Chai Wah Wu, Jan 23 2018: (Start)
For n > 1, a(n) == 0 mod 3 as otherwise Fibonacci(2*k+1) or Fibonacci(2*k-1) is even. (End)
EXAMPLE
2 is in the sequence because F(3)=2 and F(5)=5 are prime.
6 is in the sequence because F(11)=89 and F(13)=233 are prime.
MAPLE
with(combinat, fibonacci): select(k -> isprime(fibonacci(2*k+1)) and isprime(fibonacci(2*k-1)), [$1..500]); # Muniru A Asiru, Jan 25 2018
MATHEMATICA
Select[Range[0, 3000], PrimeQ[Fibonacci[2 # + 1]] && PrimeQ[Fibonacci[2 # - 1]] &]
PROG
(Magma) [n: n in [0..700] | IsPrime(Fibonacci(2*n+1)) and IsPrime(Fibonacci(2*n-1))];
(PARI) isok(n) = isprime(fibonacci(2*n-1)) && isprime(fibonacci(2*n+1)); \\ Michel Marcus, Jan 08 2018
(Python)
from sympy import isprime
A297624_list, k, a, b, c, aflag = [], 1, 1, 1, 2, False
while k < 1000:
cflag = isprime(c)
if aflag and cflag:
A297624_list.append(k)
k, a, b, c, aflag = k + 1, c, b + c, b + 2*c, cflag # Chai Wah Wu, Jan 23 2018
(GAP) o := [];; for k in [1..500] do if IsPrime(Fibonacci(2*k+1)) and IsPrime(Fibonacci(2*k-1)) then Add(o, k); fi; od; A297624 := o; # Muniru A Asiru, Jan 25 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Jan 08 2018
STATUS
approved