OFFSET
0,5
COMMENTS
Comments: An alternating sign matrix of size n is an n X n matrix of 0's, 1's and -1's such that (a) the sum of each row and column is 1; (b) the nonzero entries in each row and column alternate in sign. If k < n, we relax the condition on the columns slightly, and require that
(a) If a column is not all zeros, the first nonzero entry is 1;
(b) The nonzero entries in each column alternate in sign.
The second reference gives a sequence of partially ordered sets Phi_n such that the alternating sign matrices of size n are in bijection with the maximal chains of Phi_n. This sequence gives the number of saturated chains in Phi_n which begin at the root vertex and end at any vertex of height k.
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..104
P. Terwilliger, A Poset Phi_n whose maximal chains are in bijection with the n by n alternating sign matrices, arXiv:1710.04733 [math.CO], 2017.
FORMULA
EXAMPLE
a(3,3)=7 because there are seven alternating sign matrices of size 3. Six of these are the permutation matrices, and the seventh is the matrix ((0,1,0),(1,-1,1),(0,1,0)).
a(n,0)=1 because there is only one possible n X 0 matrix: the empty matrix.
a(4,4)=42 because there are 42 4 X 4 alternating sign matrices. If we look only at the first two rows in each of the 42 4 X 4 alternating sign matrices, we get 16 distinct 2 X 4 matrices, and so a(4,2)=16. The 16 2 X 4 matrices are
{{0, 0, 0, 1}, {0, 0, 1, 0}},
{{0, 0, 0, 1}, {0, 1, 0, 0}},
{{0, 0, 0, 1}, {1, 0, 0, 0}},
{{0, 0, 1, 0}, {0, 0, 0, 1}},
{{0, 0, 1, 0}, {0, 1, 0, 0}},
{{0, 0, 1, 0}, {1, 0, 0, 0}},
{{0, 1, 0, 0}, {0, 0, 0, 1}},
{{0, 1, 0, 0}, {0, 0, 1, 0}},
{{0, 1, 0, 0}, {1, 0, 0, 0}},
{{1, 0, 0, 0}, {0, 0, 0, 1}},
{{1, 0, 0, 0}, {0, 0, 1, 0}},
{{1, 0, 0, 0}, {0, 1, 0, 0}},
{{0, 0, 1, 0}, {0, 1, -1, 1}},
{{0, 0, 1, 0}, {1, 0, -1, 1}},
{{0, 1, 0, 0}, {1, -1, 0, 1}},
{{0, 1, 0, 0}, {1, -1, 1, 0}}.
Triangle begins:
=============================================================================================
n\k| 0 1 2 3 4 5 6 7 8 9 10
---|-----------------------------------------------------------------------------------------
_0 | 1
_1 | 1 1
_2 | 1 2 2
_3 | 1 3 7 7
_4 | 1 4 16 42 42
_5 | 1 5 30 149 429 429
_6 | 1 6 50 406 2394 7436 7436
_7 | 1 7 77 938 9698 65910 218348 218348
_8 | 1 8 112 1932 31920 403572 3096496 10850216 10850216
_9 | 1 9 156 3654 90576 1931325 29020904 247587252 911835460 911835460
10 | 1 10 210 6468 229680 7722110 205140540 3586953760 33631201864 129534272700 129534272700
...
MATHEMATICA
(* First we compute the Hasse diagram for Terwilliger's poset as a directed graph object. *)
ToAlternatingSignList[list_] :=
Module[{s = 1},
Table[If[list[[k]] == 0, 0, (s = -s); -s], {k, 1, Length[list]}]]
AllAlternatingSignRows[n_] :=
AllAlternatingSignRows[
n] = (ToAlternatingSignList /@
Select[Table[IntegerDigits[q, 2, n], {q, 0, 2^n - 1}],
OddQ[Total[#]] &])
output[vertex_] :=
Select[Table[
vertex + li, {li, AllAlternatingSignRows[Length[vertex]]}],
And[Min[#] >= 0, Max[#] <= 1] &]
elist[vertex_] := ((vertex \[DirectedEdge] #) & /@ output[vertex])
ASMPoset[n_] :=
ASMPoset[n] =
Graph[Flatten[
Table[elist[IntegerDigits[k, 2, n]], {k, 0, 2^n - 1}]]]
(*Now we compute the number of paths of length k starting at the root vertex.*)
ASMPosetAdjacencyMatrix[n_] := Normal[AdjacencyMatrix[ASMPoset[n]]]
Table[Total /@
First /@ NestList[ASMPosetAdjacencyMatrix[n].# &,
IdentityMatrix[2^n], n], {n, 1, 10}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ben Branman, Jan 01 2018
STATUS
approved