

A297257


Numbers whose base5 digits have greater upvariation than downvariation; see Comments.


4



7, 8, 9, 13, 14, 19, 27, 28, 29, 32, 33, 34, 37, 38, 39, 42, 43, 44, 47, 48, 49, 53, 54, 58, 59, 63, 64, 68, 69, 73, 74, 79, 84, 89, 94, 99, 127, 128, 129, 132, 133, 134, 137, 138, 139, 142, 143, 144, 147, 148, 149, 152, 153, 154, 157, 158, 159, 162, 163
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Suppose that n has baseb digits b(m), b(m1), ..., b(0). The baseb downvariation of n is the sum DV(n,b) of all d(i)d(i1) for which d(i) > d(i1); the baseb upvariation of n is the sum UV(n,b) of all d(k1)d(k) for which d(k) < d(k1). The total baseb variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000


EXAMPLE

163 in base5: 1,1,2,3, having DV = 0, UV = 2, so that 163 is in the sequence.


MATHEMATICA

g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
b = 5; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
w = Sign[Flatten[p /. {} > {0}] + Flatten[q /. {} > {0}]];
Take[Flatten[Position[w, 1]], 120] (* A297255 *)
Take[Flatten[Position[w, 0]], 120] (* A297256 *)
Take[Flatten[Position[w, 1]], 120] (* A297257 *)


CROSSREFS

Cf. A297330, A297255, A297256.
Sequence in context: A174185 A309152 A170933 * A296698 A297131 A289740
Adjacent sequences: A297254 A297255 A297256 * A297258 A297259 A297260


KEYWORD

nonn,base,easy


AUTHOR

Clark Kimberling, Jan 15 2018


STATUS

approved



