OFFSET
1,2
COMMENTS
Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
EXAMPLE
267 in base-5: 2,0,3,2, having DV = 3, UV = 3, so that 267 is in the sequence.
MATHEMATICA
g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
b = 5; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
Take[Flatten[Position[w, -1]], 120] (* A297255 *)
Take[Flatten[Position[w, 0]], 120] (* A297256 *)
Take[Flatten[Position[w, 1]], 120] (* A297257 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 15 2018
STATUS
approved