|
|
A297216
|
|
a(0)=1; a(1)=1; for n >= 2, a(n) = a(n-A000120(n)) + a(n-1-A023416(n))
|
|
1
|
|
|
1, 1, 2, 3, 4, 6, 8, 12, 16, 20, 28, 36, 48, 64, 84, 120, 156, 184, 240, 312, 396, 480, 624, 792, 1020, 1248, 1584, 2040, 2496, 3288, 4080, 5664, 7248, 8160, 10536, 12912, 16200, 18696, 23448, 29112, 36360, 42144, 52560, 65472, 78504, 94704, 118032, 147264, 183504, 212736
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
for n >= 6, a(n) = k(n) * (a(0) + 3*a(1)).
|
|
LINKS
|
|
|
EXAMPLE
|
n=7, A000120(7)=3, A023416(7)=0. a(7) = a(4)+a(6) = a(3)+a(1)+a(4)+a(4) = 3*(a(3)+a(1)) = 3*(a(1)+a(2)+a(1)) = 3*(a(0)+3*a(1)). a(7)=12; k(7)=3.
|
|
MAPLE
|
option remember ;
if n <=1 then
1;
else
procname(n-wt(n))+procname(n-1-A023416(n)) ;
end if;
end proc:
|
|
PROG
|
(PARI) a(n) = if (n<=1, 1, a(n-hammingweight(n)) + a(n-1-(#binary(n)-hammingweight(n)))); \\ Michel Marcus, Dec 27 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|