login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297140
Numbers having an up-first zigzag pattern in base 8; see Comments.
4
10, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 28, 29, 30, 31, 37, 38, 39, 46, 47, 55, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122
OFFSET
1,1
COMMENTS
A number n having base-b digits d(m), d(m-1),..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297140-A297142 partition the natural numbers. See the guide at A297146.
EXAMPLE
Base-8 digits of 3575: 6, 7, 6, 7, with pattern UDU, so that 3575 is in the sequence.
MATHEMATICA
a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300;
b = 8; t = Table[a[n, b], {n, 1, 10*z}];
u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297140 *)
v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297141 *)
Complement[Range[z], Union[u, v]] (* A297142 *)
CROSSREFS
Sequence in context: A174397 A297266 A296707 * A173688 A008709 A008708
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Jan 15 2018
STATUS
approved