login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A297137
Numbers having an up-first zigzag pattern in base 7; see Comments.
4
9, 10, 11, 12, 13, 17, 18, 19, 20, 25, 26, 27, 33, 34, 41, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136
OFFSET
1,1
COMMENTS
A number n having base-b digits d(m), d(m-1),..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297137-A297139 partition the natural numbers. See the guide at A297146.
LINKS
EXAMPLE
Base-7 digits of 4751: 1,6,5,6,5, with pattern UDUD, so that 4751 is in the sequence.
MAPLE
read("transforms") :
isA297137 := proc(n)
local dgs, ud;
dgs := convert(n, base, 7) ;
if nops(dgs) < 2 then
return false;
end if;
ud := DIFF(dgs) ;
if 0 in ud then
return false;
else
simplify( op(-1, ud) < 0) ;
end if;
end proc:
for n from 1 to 200 do
if isA297137(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jan 18 2018
MATHEMATICA
a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300;
b = 7; t = Table[a[n, b], {n, 1, 10*z}];
u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297137 *)
v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297138 *)
Complement[Range[z], Union[u, v]] (* A297139 *)
CROSSREFS
Sequence in context: A268360 A297263 A296704 * A129849 A379069 A274562
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Jan 15 2018
STATUS
approved