login
A297003
a(n) = 2^(n-1), n=1,2,3; for n >= 4, a(n) is the number of the previous terms dividing n.
1
1, 2, 4, 3, 1, 4, 2, 6, 3, 4, 2, 11, 2, 6, 4, 10, 2, 11, 2, 13, 4, 10, 2, 18, 2, 11, 4, 16, 2, 17, 2, 19, 7, 13, 3, 24, 2, 14, 7, 21, 2, 23, 2, 24, 5, 16, 2, 31, 4, 19, 6, 25, 2, 24, 6, 27, 7, 17, 2, 35, 2, 20, 9, 28, 5, 29, 2, 29, 6, 29, 2, 41, 2, 22, 8, 31
OFFSET
1,2
LINKS
FORMULA
a(p) = 2, where p is prime, other than 3 and 5.
EXAMPLE
1-3) a(1)=1, a(2)=2 a(3)=4 by the definition;
4) Let n=4. From the previous terms {1,2,4} everyone divides 4, so a(4)=3;
5) Let n=5. From the previous terms {1,2,4,3} only 1 divides 5. So a(5)=1;
6) Let n=6. From the previous terms {1,2,4,3,1} exactly four divide 6. So a(6)=4; etc.
MATHEMATICA
first[n_] := Fold[Append[#1, Count[#1, k_ /; Divisible[#2, k]]] &,
2^Range[0, Min[n - 1, 2]], Range[4, n]] (* Michael De Vlieger, Dec 23 2017 *)
PROG
(PARI) first(n) = my(res = vector(n), c = 0); for(x = 1, min(n, 3), res[x] = 1<<(x-1)); for(x=4, n, for(k=1, x-1, if(x%res[k]==0, c++)); res[x] = c; c = 0); res \\ Iain Fox, Dec 23 2017
(Sage)
def A297003_list(leng):
L = [1, 2, 4]
if leng < 4: return L[0:leng]
for n in (4..leng) :
count = 0
for l in L: count += int(l.divides(n))
L.append(count)
return L
print(A297003_list(76)) # Peter Luschny, Dec 24 2017
CROSSREFS
Cf. A088167.
Sequence in context: A275117 A243141 A243207 * A071284 A104753 A201759
KEYWORD
nonn,look
AUTHOR
Vladimir Shevelev, Dec 23 2017
EXTENSIONS
More terms from Peter J. C. Moses, Dec 23 2017
STATUS
approved