login
A297005
Values of n for which pi_{3,2}(p_n) - pi_{3,1}(p_n) = -1, where p_n is the n-th prime and pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
3
23338590792, 23338590794, 23338590796, 23338590798, 23338590800, 23338590802, 23338590804, 23338590810, 23338590814, 23338590816, 23338590818, 23338590832, 23338591016, 23338591018, 23338591028, 23338591030, 23338591032, 23338591084, 23338591086, 23338591088, 23338591302, 23338591340, 23338591342, 23338591344, 23338591346, 23338591348, 23338591350, 23338591656, 23338591658, 23338591662
OFFSET
1,1
COMMENTS
This sequence is a companion sequence to A297006. Starting from a(20591)=216415270060 the sequence includes the second sign-changing zone predicted by C. Bays et al. in 2001. The sequence with the first two sign-changing zones up to 10^13 contains 84323 terms with a(84323)=216682882512 as its last term (see b-file). In addition, a(1) = A096630(1).
LINKS
Sergei D. Shchebetov, Table of n, a(n) for n = 1..84323
A. Alahmadi, M. Planat, P. Solé, Chebyshev's bias and generalized Riemann hypothesis, HAL Id: hal-00650320.
C. Bays and R. H. Hudson, Details of the first region of integers x with pi_{3,2} (x) < pi_{3,1}(x), Math. Comp. 32 (1978), 571-576.
C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76.
M. Deléglise, P. Dusart, X. Roblot, Counting Primes in Residue Classes, Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp. 1565-1575.
A. Granville, G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
M. Rubinstein, P. Sarnak, Chebyshev's bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.
Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrey S. Shchebetov and Sergei D. Shchebetov, Dec 23 2017
STATUS
approved