login
A296901
Numbers whose base-16 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.
4
257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 769, 770, 771, 772, 773, 774, 775, 776
OFFSET
1,1
COMMENTS
A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296900-A296902 partition the natural numbers. See the guides at A296712 and A296882.
LINKS
EXAMPLE
The base-16 digits of 135698 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 135698 is in the sequence.
MATHEMATICA
z = 200; b = 16;
d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296900 *)
Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296901 *)
Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296902 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 12 2018
STATUS
approved