login
A296898
Numbers whose base-15 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.
4
226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686
OFFSET
1,1
COMMENTS
A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296897-A296899 partition the natural numbers. See the guides at A296712 and A296882.
LINKS
EXAMPLE
The base-15 digits of 105092 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 105092 is in the sequence.
MATHEMATICA
z = 200; b = 15;
d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296897 *)
Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296898 *)
Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296899 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 12 2018
STATUS
approved