|
|
A296699
|
|
Numbers n whose base-5 digits d(m), d(m-1), ... d(0) have #(rises) < #(falls); see Comments.
|
|
4
|
|
|
5, 10, 11, 15, 16, 17, 20, 21, 22, 23, 25, 30, 50, 55, 56, 60, 61, 75, 80, 81, 85, 86, 87, 90, 91, 92, 100, 105, 106, 110, 111, 112, 115, 116, 117, 118, 120, 121, 122, 123, 125, 130, 135, 136, 140, 141, 142, 145, 146, 147, 148, 150, 155, 180, 205, 210, 211
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296697-A296699 partition the natural numbers. See the guide at A296712.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
The base-5 digits of 211 are 1,3,2,1; here #(rises) = 1 and #(falls) = 2, so that 211 is in the sequence.
|
|
MATHEMATICA
|
z = 200; b = 5; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296697 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296698 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296699 *)
|
|
CROSSREFS
|
Cf. A296697, A296698, A296712.
Sequence in context: A290469 A140507 A297255 * A297132 A136823 A275200
Adjacent sequences: A296696 A296697 A296698 * A296700 A296701 A296702
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Clark Kimberling, Dec 21 2017
|
|
STATUS
|
approved
|
|
|
|