login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296591
a(n) = Product_{k=0..n} (n + k)!.
9
1, 2, 288, 12441600, 421382062080000, 23120161750363668480000000, 3683853104727992382799761899520000000000, 2777528195026874073410445622205453260145295360000000000000
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Barnes G-Function.
FORMULA
a(n) = BarnesG(2*n + 2) / BarnesG(n + 1).
a(n) ~ 2^(2*n^2 + 5*n/2 + 11/12) * n^((n+1)*(3*n+1)/2) * Pi^((n+1)/2) / exp(9*n^2/4 + 2*n).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
a(n-1) *(2*n-1)! *(2*n)! /(n-1)!)
end:
seq(a(n), n=0..7); # Alois P. Heinz, Jul 11 2024
MATHEMATICA
Table[Product[(n + k)!, {k, 0, n}], {n, 0, 10}]
Table[Product[(2*n - k)!, {k, 0, n}], {n, 0, 10}]
Table[BarnesG[2*n + 2]/BarnesG[n + 1], {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 16 2017
EXTENSIONS
Missing a(0)=1 inserted by Georg Fischer, Nov 18 2021
STATUS
approved