login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296530
Number of non-averaging permutations of [n] with first element n.
2
1, 1, 1, 1, 2, 2, 5, 10, 28, 24, 50, 124, 283, 528, 1266, 3715, 10702, 8740, 15414, 31988, 68465, 160964, 380124, 890738, 2230219, 3990852, 8354276, 20281732, 46056920, 131289988, 349369117, 1054037937, 3081527146, 2440225484, 4201202020, 7475926894, 13276918426
OFFSET
0,5
COMMENTS
A non-averaging permutation avoids any 3-term arithmetic progression.
a(0) = 1 by convention.
FORMULA
a(n) = A296529(n,n).
EXAMPLE
a(4) = 2: 4213, 4231.
a(5) = 2: 51324, 51342.
a(6) = 5: 621453, 624153, 624315, 624351, 624513.
a(7) = 10: 7312564, 7315264, 7315426, 7315462, 7315624, 7351264, 7351426, 7351462, 7351624, 7356124.
MAPLE
b:= proc(s) option remember; local n, r, ok, i, j, k;
if nops(s) = 1 then 1
else n, r:= max(s), 0;
for j in s minus {n} do ok, i, k:= true, j-1, j+1;
while ok and i>=0 and k<n do ok, i, k:=
not i in s xor k in s, i-1, k+1 od;
r:= r+ `if`(ok, b(s minus {j}), 0)
od; r
fi
end:
a:= n-> b({$0..n} minus {n-1}):
seq(a(n), n=0..30);
MATHEMATICA
b[s_] := b[s] = Module[{n = Max[s], r = 0, ok, i, j, k}, If[Length[s] == 1, 1, Do[{ok, i, k} = {True, j - 1, j + 1}; While[ok && i >= 0 && k < n, {ok, i, k} = {FreeQ[s, i] ~Xor~ MemberQ[s, k], i - 1, k + 1}]; r = r + If[ok, b[s ~Complement~ {j}], 0], {j, s ~Complement~ {n}}]; r]];
a[n_] := b[Complement[Range[0, n], {n - 1}]]
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Main diagonal of A296529.
Sequence in context: A081374 A243338 A245306 * A117400 A005637 A233018
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 14 2017
STATUS
approved