login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296531
Number of non-averaging permutations of [n] with first element ceiling(n/2).
2
1, 1, 1, 2, 3, 6, 13, 32, 51, 76, 161, 386, 903, 2280, 5018, 12828, 19720, 27656, 48788, 100120, 220686, 537208, 1258242, 3123166, 7056165, 17189752, 35968308, 82137764, 189847917, 509880208, 1322092262, 3807727932, 5678509066, 7721623440, 13293899416, 23650787296
OFFSET
0,4
COMMENTS
A non-averaging permutation avoids any 3-term arithmetic progression.
a(0) = 1 by convention.
FORMULA
a(n) = A296529(n,ceiling(n/2)).
EXAMPLE
a(5) = 6: 31254, 31524, 31542, 35124, 35142, 35412.
a(6) = 13: 312564, 315264, 315426, 315462, 315624, 351264, 351426, 351462, 351624, 354126, 354162, 354612, 356124.
MAPLE
b:= proc(s) option remember; local n, r, ok, i, j, k;
if nops(s) = 1 then 1
else n, r:= max(s), 0;
for j in s minus {n} do ok, i, k:= true, j-1, j+1;
while ok and i>=0 and k<n do ok, i, k:=
not i in s xor k in s, i-1, k+1 od;
r:= r+ `if`(ok, b(s minus {j}), 0)
od; r
fi
end:
a:= n-> b({$0..n} minus {ceil(n/2)-1}):
seq(a(n), n=0..25);
MATHEMATICA
b[s_] := b[s] = Module[{n = Max[s], r = 0, ok, i, j, k}, If[Length[s] == 1, 1, Do[{ok, i, k} = {True, j - 1, j + 1}; While[ok && i >= 0 && k < n, {ok, i, k} = {FreeQ[s, i] ~Xor~ MemberQ[s, k], i - 1, k + 1}]; r = r + If[ok, b[s ~Complement~ {j}], 0], {j, s ~Complement~ {n}}]; r]];
a[n_] := b[Complement[Range[0, n], {Ceiling[n/2] - 1}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 14 2017
STATUS
approved