OFFSET
0,4
COMMENTS
A non-averaging permutation avoids any 3-term arithmetic progression.
a(0) = 1 by convention.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..99
Eric Weisstein's World of Mathematics, Nonaveraging Sequence
Wikipedia, Arithmetic progression
FORMULA
a(n) = A296529(n,ceiling(n/2)).
EXAMPLE
a(5) = 6: 31254, 31524, 31542, 35124, 35142, 35412.
a(6) = 13: 312564, 315264, 315426, 315462, 315624, 351264, 351426, 351462, 351624, 354126, 354162, 354612, 356124.
MAPLE
b:= proc(s) option remember; local n, r, ok, i, j, k;
if nops(s) = 1 then 1
else n, r:= max(s), 0;
for j in s minus {n} do ok, i, k:= true, j-1, j+1;
while ok and i>=0 and k<n do ok, i, k:=
not i in s xor k in s, i-1, k+1 od;
r:= r+ `if`(ok, b(s minus {j}), 0)
od; r
fi
end:
a:= n-> b({$0..n} minus {ceil(n/2)-1}):
seq(a(n), n=0..25);
MATHEMATICA
b[s_] := b[s] = Module[{n = Max[s], r = 0, ok, i, j, k}, If[Length[s] == 1, 1, Do[{ok, i, k} = {True, j - 1, j + 1}; While[ok && i >= 0 && k < n, {ok, i, k} = {FreeQ[s, i] ~Xor~ MemberQ[s, k], i - 1, k + 1}]; r = r + If[ok, b[s ~Complement~ {j}], 0], {j, s ~Complement~ {n}}]; r]];
a[n_] := b[Complement[Range[0, n], {Ceiling[n/2] - 1}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 14 2017
STATUS
approved