login
A296258
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)^2, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
2
1, 3, 8, 27, 60, 123, 232, 436, 768, 1325, 2237, 3731, 6164, 10120, 16540, 26949, 43813, 71123, 115336, 186900, 302720, 490149, 793445, 1284219, 2078340, 3363343, 5442524, 8806767, 14250252, 23058043, 37309384, 60368583, 97679192, 158049071, 255729632
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
FORMULA
a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(0)^2 + f(n-2)*b(1)^2 + ... + f(2)*b(n-3)^2 + f(1)*b(n-2)^2, where f(n) = A000045(n), the n-th Fibonacci number.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2;
a(2) = a(0) + a(1) + b(0)^2 = 8;
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
MATHEMATICA
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296258 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
Sequence in context: A023637 A128894 A118165 * A066020 A066018 A066023
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 11 2017
STATUS
approved