login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A296001
Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
3
1, 2, 10, 43, 185, 796, 3425, 14737, 63411, 272845, 1174000, 5051498, 21735632, 93524277, 402417118, 1731524071, 7450417675, 32057725596, 137938276110, 593522081260, 2553812262104, 10988566855385, 47281706383454, 203444160458068, 875381402033582
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 4.302809183918588... (as in A296002). See A296000 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that
a(2) = a(0)*b(1) + a(1)*b(0) = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
MATHEMATICA
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];
a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 100}]; (* A296001 *)
t = N[Table[a[n]/a[n - 1], {n, 1, 500, 100}], 200]
Take[RealDigits[Last[t], 10][[1]], 100] (* A296002 *)
CROSSREFS
Sequence in context: A286760 A197048 A175613 * A121949 A376225 A005144
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 04 2017
EXTENSIONS
Conjectured g.f. removed by Alois P. Heinz, Jun 25 2018
STATUS
approved