login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
3

%I #16 Jun 25 2018 17:37:29

%S 1,2,10,43,185,796,3425,14737,63411,272845,1174000,5051498,21735632,

%T 93524277,402417118,1731524071,7450417675,32057725596,137938276110,

%U 593522081260,2553812262104,10988566855385,47281706383454,203444160458068,875381402033582

%N Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

%C The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 4.302809183918588... (as in A296002). See A296000 for a guide to related sequences.

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.

%e a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that

%e a(2) = a(0)*b(1) + a(1)*b(0) = 10

%e Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)

%t mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &];

%t a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}];

%t b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

%t Table[a[n], {n, 0, 100}]; (* A296001 *)

%t t = N[Table[a[n]/a[n - 1], {n, 1, 500, 100}], 200]

%t Take[RealDigits[Last[t], 10][[1]], 100] (* A296002 *)

%Y Cf. A296000, A296002.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Dec 04 2017

%E Conjectured g.f. removed by _Alois P. Heinz_, Jun 25 2018