login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295708
Numbers n such that prime(n) contains a substring of all the prime digits in order, i.e., "2357".
1
350, 8919, 13213, 15699, 18175, 19909, 20623, 20886, 20887, 20888, 20889, 20890, 20891, 20892, 21416, 27890, 30161, 30935, 32471, 43332, 43333, 43334, 46246, 47005, 48517, 52993, 53745, 57484, 64129, 65688, 70729, 71446, 72909, 72998, 73639, 77949, 80241, 80242
OFFSET
1,1
COMMENTS
12941584 is the least integer m with more than one "2357" substring in prime(m).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Dec 28 2017
EXAMPLE
8919 is in the sequence because prime(8919) = 92357 contains a substring of prime digits "2357".
27890 is in the sequence because prime(27980) = 323579 contains a substring of prime digits "2357".
MAPLE
F:= proc(d) local x, y, j;
op(map(numtheory:-pi, sort(convert(select(isprime, {seq(seq(seq(x+10^j*2357+10^(j+4)*y, y=10^(d-j-5)..10^(d-j-4)-1), x=1..10^j-1, 2), j=1..d-5),
seq(10^(d-4)*2357+x, x=1..10^(d-4)-1), seq(10^4*x+2357, x=10^(d-5)..10^(d-4)-1)}), list))));
end proc:
350, seq(F(d), d=5..7); # Robert Israel, Nov 29 2017
MATHEMATICA
Select[Range[100000], MemberQ[Partition[IntegerDigits[Prime[#]], 4, 1], {2, 3, 5, 7}] &]
PROG
(PARI) isok(n)=p = prime(n); ret = 0; while (p > 1, if ((p % 10000) == 2357, ret = 1; break); p = floor(p/10); ); return (ret); \\ Michel Marcus, Dec 15 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Nov 26 2017
STATUS
approved