Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 28 2017 01:59:58
%S 350,8919,13213,15699,18175,19909,20623,20886,20887,20888,20889,20890,
%T 20891,20892,21416,27890,30161,30935,32471,43332,43333,43334,46246,
%U 47005,48517,52993,53745,57484,64129,65688,70729,71446,72909,72998,73639,77949,80241,80242
%N Numbers n such that prime(n) contains a substring of all the prime digits in order, i.e., "2357".
%C 12941584 is the least integer m with more than one "2357" substring in prime(m).
%H Charles R Greathouse IV, <a href="/A295708/b295708.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) ~ n. - _Charles R Greathouse IV_, Dec 28 2017
%e 8919 is in the sequence because prime(8919) = 92357 contains a substring of prime digits "2357".
%e 27890 is in the sequence because prime(27980) = 323579 contains a substring of prime digits "2357".
%p F:= proc(d) local x,y,j;
%p op(map(numtheory:-pi,sort(convert(select(isprime, {seq(seq(seq(x+10^j*2357+10^(j+4)*y, y=10^(d-j-5)..10^(d-j-4)-1),x=1..10^j-1,2),j=1..d-5),
%p seq(10^(d-4)*2357+x,x=1..10^(d-4)-1),seq(10^4*x+2357,x=10^(d-5)..10^(d-4)-1)}),list))));
%p end proc:
%p 350, seq(F(d),d=5..7); # _Robert Israel_, Nov 29 2017
%t Select[Range[100000], MemberQ[Partition[IntegerDigits[Prime[#]], 4, 1], {2, 3, 5, 7}] &]
%o (PARI) isok(n)=p = prime(n); ret = 0; while (p > 1, if ((p % 10000) == 2357, ret = 1; break); p = floor(p/10);); return (ret); \\ _Michel Marcus_, Dec 15 2017
%Y Cf. A054261, A069489, A085823.
%K nonn,base
%O 1,1
%A _K. D. Bajpai_, Nov 26 2017