login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A295665
Fully multiplicative with a(prime(m)) = prime(k) when m = prime(k), and a(prime(m)) = 1 when m is not a prime.
4
1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 5, 2, 1, 1, 6, 1, 7, 4, 1, 3, 2, 5, 1, 2, 9, 1, 8, 1, 1, 6, 11, 1, 10, 7, 3, 4, 1, 1, 2, 3, 13, 2, 1, 5, 12, 1, 1, 2, 1, 9, 14, 1, 1, 8, 15, 1, 2, 1, 17, 6, 1, 11, 4, 1, 3, 10, 19, 7, 2, 3, 1, 4, 1, 1, 18, 1, 5, 2, 1, 3, 16, 13, 23, 2, 21, 1, 2, 5, 1, 12, 1, 1, 22, 1, 3, 2, 1, 1, 20, 9, 1, 14, 1, 1, 6
OFFSET
1,3
COMMENTS
The number of applications to reach 1 is A322027(n). Positions of first appearances are A076610. - Gus Wiseman, Jan 17 2020
FORMULA
Multiplicative with a(p^e) = A000720(p)^(e*A010051(A000720(p))).
a(1) = 1; for n > 1, if A055396(n) is a prime, then a(n) = A055396(n) * a(A032742(n)), otherwise a(n) = a(A032742(n)).
Other identities. For all n >= 1:
a(A006450(n)) = A000040(n).
a(A007097(n)) = A007097(n-1).
a(A294876(n)) = A295666(n).
EXAMPLE
For n = 360 = 2^3 * 3^2 * 5 = prime(1)^3 * prime(2)^2 * prime(3), 1 is not a prime, but 2 and 3 are, thus a(360) = 2^2 * 3 = 12.
MATHEMATICA
Table[Times@@Cases[FactorInteger[n], {p_?(PrimeQ[PrimePi[#]]&), k_}:>PrimePi[p]^k], {n, 40}] (* Gus Wiseman, Jan 17 2020 *)
PROG
(Scheme) (definec (A295665 n) (if (= 1 n) 1 (let ((k (A055396 n))) (* (if (zero? (A010051 k)) 1 k) (A295665 (A032742 n))))))
CROSSREFS
Cf. also A003963, A257538.
Positions of 1's are A320628.
Positions of terms > 1 are A331386.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
The number of prime prime indices is A257994.
The number of nonprime prime indices is A330944.
Numbers whose prime indices are not all prime are A330945.
Sequence in context: A232890 A300441 A375378 * A103484 A016444 A280831
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 26 2017
STATUS
approved