The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295265 Numbers m such that sum of its i first divisors equals the sum of its j first non-divisors for some i, j. 1
 4, 8, 10, 13, 14, 16, 19, 20, 21, 22, 26, 28, 30, 32, 34, 38, 39, 40, 43, 44, 46, 50, 52, 53, 56, 58, 60, 62, 63, 64, 68, 70, 72, 74, 76, 80, 82, 86, 88, 89, 90, 92, 94, 98, 99, 100, 103, 104, 106, 110, 111, 112, 116, 117, 118, 122, 124, 128, 130, 132, 134, 135 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Or numbers m such that Sum_{k=1..i} d(k) = Sum_{k=1..j} nd(k) for some i, j where d(k) are the i first divisors and nd(k) the j non-divisors of m. The corresponding sums are 3, 3, 3, 14, 3, 3, 20, 3, 11, 3, 3, (3 or 14), 11, 3, 3, 3, 17, 3, 44, 3, 3, 3, 3, 54, 3, 3, 15, 3, 11, 3, 3, 3, 33, 3, 3, 3, ... containing the set of primes {3, 11, 17, 23, 29, 37, 41, 43, 53, 59, 61, 71, 79, ...}. The equality Sum_{k=1..i} d(k) = Sum_{k=1..j} nd(k) is not always unique, for instance for a(12) = 28, we find 1 + 2 = 3 and 1 + 2 + 4 + 7 = 3 + 5 + 6 = 14. The primes of the sequence are 13, 19, 43, 53, 89, 103, 151, 229, 251, 349, 433, ... (primes of the form k(k+1)/2 - 2; see A124199). +-----+-----+-----+------+-----------------------------------------+ |  n  |  i  |  j  | a(n) | Sum_{k=1..i} d(k) = Sum_{k=1..j} nd(k)  | +-----+-----+-----+------+-----------------------------------------+ |  1  |  2  |  1  |   4  |          1 + 2 = 3                      | |  2  |  2  |  1  |   8  |          1 + 2 = 3                      | |  3  |  2  |  1  |  10  |          1 + 2 = 3                      | |  4  |  2  |  4  |  13  |         1 + 13 = 2 + 3 + 4 + 5 = 14     | |  5  |  2  |  1  |  14  |          1 + 2 = 3                      | |  6  |  2  |  1  |  16  |          1 + 2 = 3                      | |  7  |  2  |  5  |  19  |         1 + 19 = 2 + 3 + 4 + 5 + 6 = 20 | |  8  |  2  |  1  |  20  |          1 + 2 = 3                      | |  9  |  3  |  3  |  21  |      1 + 3 + 7 = 2 + 4 + 5 = 11         | | 10  |  2  |  1  |  22  |          1 + 2 = 3                      | | 11  |  2  |  1  |  26  |          1 + 2 = 3                      | | 12  |  2  |  1  |  28  |          1 + 2 = 3                      | |     |  4  |  3  |  28  |  1 + 2 + 4 + 7 = 3 + 5 + 6 = 14         | | 13  |  4  |  2  |  30  |  1 + 2 + 3 + 5 = 4 + 7 = 11             | | 14  |  2  |  1  |  32  |          1 + 2 = 3                      | (End) LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 EXAMPLE 30 is in the sequence because d(1) + d(2) + d(3) + d(4) = 1 + 2 + 3 + 5 = 11 and nd(1) + nd(2) = 4 + 7 = 11. MAPLE with(numtheory):nn:=300: for n from 1 to nn do: d:=divisors(n):n0:=nops(d):lst:={}:ii:=0:   for i from 1 to n do:    lst:=lst union {i}:   od:     lst:=lst minus d:n1:=nops(lst):      for m from 1 to n0 while(ii=0) do:       s1:=sum(‘d[i]’, ‘i’=1..m):        for j from 1 to n1 while(ii=0) do:         s2:=sum(‘lst[i]’, ‘i’=1..j):          if s1=s2           then           ii:=1:printf(`%d, `, n):          else          fi:         od:      od:   od: MATHEMATICA fQ[n_] := Block[{d = Divisors@ n}, nd = nd = Complement[Range@ n, d]; Intersection[Accumulate@ d, Accumulate@ nd] != {}]; Select[ Range@135, fQ] (* Robert G. Wilson v, Mar 06 2018 *) PROG (PARI) isok(n) = {d = divisors(n); psd = vector(#d, k, sum(j=1, k, d[j])); nd = setminus([1..n], d); psnd = vector(#nd, k, sum(j=1, k, nd[j])); #setintersect(psd, psnd) != 0; } \\ Michel Marcus, May 05 2018 CROSSREFS Cf. A064510, A124199, A185729, A240698. Sequence in context: A238749 A310984 A346002 * A172153 A310985 A342734 Adjacent sequences:  A295262 A295263 A295264 * A295266 A295267 A295268 KEYWORD nonn AUTHOR Michel Lagneau, Feb 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 24 04:41 EDT 2021. Contains 348217 sequences. (Running on oeis4.)