login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295130
a(n) = 3*n*(64*n^2 + 1).
2
195, 1542, 5193, 12300, 24015, 41490, 65877, 98328, 139995, 192030, 255585, 331812, 421863, 526890, 648045, 786480, 943347, 1119798, 1316985, 1536060, 1778175, 2044482, 2336133, 2654280, 3000075, 3374670, 3779217, 4214868, 4682775, 5184090, 5719965, 6291552, 6900003, 7546470, 8232105, 8958060, 9725487
OFFSET
1,1
REFERENCES
Martin Gardner, Mathematical Carnival, 1975, Alfred A. Knopf Inc., New York.
LINKS
Stuart Anderson, Squared squares, 2014
Michael H. Bischoff, Squares in a square
FORMULA
a(n) = 3*n*(64*n^2 + 1).
From Colin Barker, Nov 23 2017: (Start)
G.f.: 3*x*(65 + 254*x + 65*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
a(n) = A008585(n) * A158686(n). - Omar E. Pol, Nov 24 2017
E.g.f.: 3*x*e^x * (65 + 192*x + 64*x^2). - Iain Fox, Dec 22 2017
EXAMPLE
For examples see "Squares in a square" in the LINKS section.
MATHEMATICA
f[n_] := 3n (64n^2 +1); Array[f, 33] (* or *)
CoefficientList[ Series[(3 (65 +254x +65x^2))/(-1 +x)^4, {x, 0, 33}], x] (* or *)
LinearRecurrence[{4, -6, 4, -1}, {195, 1542, 5193, 12300}, 34] (* Robert G. Wilson v, Dec 27 2017 *)
PROG
(PARI) Vec(3*x*(65 + 254*x + 65*x^2) / (1 - x)^4 + O(x^40)) \\ Colin Barker, Nov 23 2017
(PARI) a(n) = 192*n^3 + 3*n \\ Iain Fox, Dec 22 2017
CROSSREFS
Sequence in context: A158003 A225713 A172354 * A257765 A259694 A066232
KEYWORD
nonn,easy
AUTHOR
Michael H. Bischoff, Nov 15 2017
STATUS
approved