login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294785
E.g.f. A(x) satisfies: A(x) = A(x^2) * exp( Integral A(x^2) dx ).
2
1, 1, 3, 9, 57, 297, 2187, 15921, 181233, 1731249, 20741139, 241294329, 3524256297, 49123306521, 781173645723, 12522002462433, 247000850880993, 4516315005395169, 92648539990208547, 1886480713319540841, 43524900326040674841, 986331301183882645641, 24094409085348757028523, 596222660659090240456209, 16242798073806940474325457, 438933088683325211888103057, 12586136448791084548892537907
OFFSET
0,3
LINKS
FORMULA
E.g.f. satisfies:
(1) exp( Integral A(x^2) dx ) = 1 + Integral A(x) dx.
(2) A(x)/A(x^2) = 1 + Integral A(x) dx.
(3) A(x) = Product_{n>=0} B( x^(2^n) ) where B(x) = 1 + Integral A(x) dx.
(4) A'(x)/A(x) = A(x^2) + 2*x * A'(x^2)/A(x^2).
(5) A'(x)/A(x) = Sum_{n>=1} 2^n * x^(2^n-1) * A( x^(2^(n+1) ).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 9*x^3/3! + 57*x^4/4! + 297*x^5/5! + 2187*x^6/6! + 15921*x^7/7! + 181233*x^8/8! + 1731249*x^9/9! + 20741139*x^10/10! + 241294329*x^11/11! + 3524256297*x^12/12! + 49123306521*x^13/13! + 781173645723*x^14/14! + 12522002462433*x^15/15! + 247000850880993*x^16/16! +...
such that A(x) = A(x^2) * exp( Integral A(x^2) dx ).
Also,
A(x) = B(x) * B(x^2) * B(x^4) * B(x^8) * B(x^16) *...* B(x^(2^n)) *...
where B(x) = 1 + Integral A(x) dx.
Further,
A'(x)/A(x) = A(x^2) + 2*x*A(x^4) + 4*x^3*A(x^8) + 8*x^7*A(x^16) + 16*x^15*A(x^32) + 32*x^31*A(x^64) +...+ 2^n * x^(2^n-1) * A(x^(2^(n+1))) +...
RELATED SERIES.
E.g.f. A(x) as a series with reduced fractional coefficients begins:
A(x) = 1 + x + 3/2*x^2 + 3/2*x^3 + 19/8*x^4 + 99/40*x^5 + 243/80*x^6 + 1769/560*x^7 + 20137/4480*x^8 + 192361/40320*x^9 + 2304571/403200*x^10 + 8936827/1478400*x^11 + 43509337/5913600*x^12 + 1819381723/230630400*x^13 + 3214706361/358758400*x^14 + 51530874331/5381376000*x^15 + 277217565523/23482368000*x^16 +...
The logarithm of the e.g.f. begins:
log(A(x)) = x + x^2 + 1/3*x^3 + x^4 + 3/10*x^5 + 1/3*x^6 + 3/14*x^7 + x^8 + 19/72*x^9 + 3/10*x^10 + 9/40*x^11 + 1/3*x^12 + 243/1040*x^13 + 3/14*x^14 + 1769/8400*x^15 + x^16 + 20137/76160*x^17 + 19/72*x^18 + 192361/766080*x^19 + 3/10*x^20 + 2304571/8467200*x^21 + 9/40*x^22 + 8936827/34003200*x^23 + 1/3*x^24 + 43509337/147840000*x^25 + 243/1040*x^26 + 1819381723/6227020800*x^27 + 3/14*x^28 + 3214706361/10403993600*x^29 + 1769/8400*x^30 + 51530874331/166822656000*x^31 + x^32 +...
The logarithmic derivative of the e.g.f. begins:
A'(x)/A(x) = 1 + 2*x + x^2 + 4*x^3 + 3/2*x^4 + 2*x^5 + 3/2*x^6 + 8*x^7 + 19/8*x^8 + 3*x^9 + 99/40*x^10 + 4*x^11 + 243/80*x^12 + 3*x^13 + 1769/560*x^14 + 16*x^15 + 20137/4480*x^16 +...
where A'(x)/A(x) = A(x^2) + 2*x * A'(x^2)/A(x^2).
The following series demonstrates an important property of the e.g.f.:
A(x)/A(x^2) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 57*x^5/5! + 297*x^6/6! + 2187*x^7/7! + 15921*x^8/8! + 181233*x^9/9! +...+ a(n)*x^(n+1)/(n+1)! +...
where A(x)/A(x^2) = 1 + Integral A(x) dx.
PROG
(PARI) {a(n) = my(A=1); for(i=1, #binary(n+1), A = subst(A, x, x^2) * exp( intformal( subst(A, x, x^2) +x*O(x^n))) ); n!*polcoeff(H=A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A075979 A128681 A292333 * A040175 A192252 A363011
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2017
STATUS
approved