login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294784
E.g.f. A(x) satisfies: A'(x) = (1 + A(x)^2)^2/4.
2
1, 1, 2, 8, 46, 346, 3212, 35468, 453976, 6607936, 107781992, 1947158168, 38592660016, 832595731696, 19422479520992, 487137028505408, 13072025077208416, 373697069074031776, 11338183238037941312, 363881995144694554688, 12316073980019762824576, 438441199984650577010176, 16376568508223695174746752, 640396538780869661656846208, 26164698834332206196492375296, 1114866540340266230645081994496
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..400 (terms 0..300 from Paul D. Hanna)
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = d/dx sin( Series_Reversion( x + cos(x) - 1 ) ).
(2) A(x) = d/dx Series_Reversion( asin(x) + sqrt(1-x^2) - 1 ).
(3) A(x) = d/dx Series_Reversion( Integral sqrt(1-x^2)/(1+x) dx ).
(4) A(x) = sqrt(1 - B(x)^2) / (1 - B(x)) where B(x) = Integral A(x) dx.
(5) Integral A(x) dx = (A(x)^2 - 1)/(A(x)^2 + 1).
(6) A(x) = (A(x) + 1/A(x))/2 * ( 1 + Integral A(x) dx ).
(7) exp( Integral (A(x) + 1/A(x))/2 dx ) = 1 + Integral A(x) dx.
(8) A(x) = 1 + Integral (1 + A(x)^2)^2/4 dx.
a(n) ~ c * (2/(Pi-2))^n * n^(n-1/6) / exp(n), where c = 1.2415... - Vaclav Kotesovec, Nov 11 2017
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 46*x^4/4! + 346*x^5/5! + 3212*x^6/6! + 35468*x^7/7! + 453976*x^8/8! + 6607936*x^9/9! + 107781992*x^10/10! + 1947158168*x^11/11! + 38592660016*x^12/12! + 832595731696*x^13/13! + 19422479520992*x^14/14! + 487137028505408*x^15/15! +...
such that A'(x) = (1 + A(x)^2)^2/4.
RELATED SERIES.
Series_Reversion( Integral sqrt(1-x^2)/(1+x) dx ) = x + x^2/2! + 2*x^3/3! + 8*x^4/4! + 46*x^5/5! + 346*x^6/6! + 3212*x^7/7! + 35468*x^8/8! +...
which equals Integral A(x) dx.
(A(x)^2 - 1)/(A(x)^2 + 1) = x + x^2/2! + 2*x^3/3! + 8*x^4/4! + 46*x^5/5! + 346*x^6/6! + 3212*x^7/7! + 35468*x^8/8! +...
which equals Integral A(x) dx.
Note that asin( Integral A(x) dx ) = Series_Reversion(x + cos(x) - 1), the e.g.f. of A200317.
A(x)^2 = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 180*x^4/4! + 1472*x^5/5! + 14616*x^6/6! + 170728*x^7/7! + 2293320*x^8/8! + 34822592*x^9/9! + 589761216*x^10/10! +...
(A(x) - 1/A(x))/2 = x + x^2/2! + 5*x^3/3! + 26*x^4/4! + 196*x^5/5! + 1786*x^6/6! + 19550*x^7/7! + 248156*x^8/8! + 3588916*x^9/9! + 58220416*x^10/10! +...
(A(x) + 1/A(x))/2 = 1 + x^2/2! + 3*x^3/3! + 20*x^4/4! + 150*x^5/5! + 1426*x^6/6! + 15918*x^7/7! + 205820*x^8/8! + 3019020*x^9/9! + 49561576*x^10/10! +...
where (A(x) - 1/A(x))/2 = (A(x) + 1/A(x))/2 * Integral A(x) dx.
PROG
(PARI) {a(n) = my(A=1); A = deriv( sin( serreverse( x + cos(x +x^2*O(x^n)) - 1 ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); A = deriv( serreverse( intformal( sqrt( (1-x)/(1+x +x*O(x^n)) ) ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n+1, A = 1 + intformal( (1 + A^2)^2/4 +x*O(x^n)) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A229559 A128085 A052801 * A180390 A300696 A074599
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 09 2017
STATUS
approved