login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294732
Maximal diameter of the connected cubic graphs on 2*n vertices.
4
1, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99
OFFSET
2,2
LINKS
L. Caccetta and W. F. Smyth, Graphs of maximum diameter, Discrete Mathematics, Volume 102, Issue 2, 20 May 1992, Pages 121-141.
Gordon Royle, Cubic Graphs, October 1996. [Broken link]
FORMULA
From Andrew Howroyd, Dec 15 2017: (Start)
a(n) = (6*n - 11 - (-1)^n)/4 for n > 2.
a(n) = a(n-2) + 3 for n > 4. (End)
From Colin Barker, Dec 16 2017: (Start)
G.f.: x^2*(1 + x + x^3) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 5. (End)
a(n) = A267528(n-1). - Hugo Pfoertner, Oct 10 2018
E.g.f.: (6 + 2*x + x^2 + 3*(x - 2)*cosh(x) + (3*x - 5)*sinh(x))/2. - Stefano Spezia, Feb 20 2023
EXAMPLE
a(5)=5 because there exists a unique graph (up to permutations) on 2*5=10 nodes, given by the following adjacency matrix
.
1 2 3 4 5 6 7 8 9 10
1 . 1 1 1 . . . . . .
2 1 . 1 1 . . . . . .
3 1 1 . . 1 . . . . .
4 1 1 . . 1 . . . . .
5 . . 1 1 . 1 . . . .
6 . . . . 1 . 1 1 . .
7 . . . . . 1 . . 1 1
8 . . . . . 1 . . 1 1
9 . . . . . . 1 1 . 1
10 . . . . . . 1 1 1 .
.
that requires a shortest possible walk using 5 edges to get from node 1 to node 9.
From Andrew Howroyd, Dec 15 2017: (Start)
The following constructions are optimal (see theorem 5 of Caccetta et al.).
Pattern for odd n >= 10. Each additional 4 nodes increases diameter by 3.
o o o o
/ | \ / | \ / | \ / | \
o--o o---o | o---o | o---o o--o
\ | / \ | / \ | / \ | /
o o o o
Pattern for even n >= 12. Each additional 4 nodes increases diameter by 3.
o--o o o o
/ | | \ / | \ / | \ / | \
o--o | o---o | o---o | o---o o--o
\ | | / \ | / \ | / \ | /
o--o o o o
(End)
MATHEMATICA
Prepend[LinearRecurrence[{1, 1, -1}, {2, 3, 5}, 100], 1] (* Jean-François Alcover, Dec 27 2017 *)
PROG
(PARI) Vec(x^2*(1 + x + x^3) / ((1 - x)^2*(1 + x)) + O(x^100)) \\ Colin Barker, Dec 16 2017
CROSSREFS
Apart from initial term, duplicate of A267528.
Sequence in context: A195123 A248758 A267528 * A045506 A007494 A258575
KEYWORD
nonn,easy
AUTHOR
Hugo Pfoertner, Dec 13 2017
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Dec 15 2017
STATUS
approved