login
A293961
Number T(n,k) of linear chord diagrams having n chords and maximal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
5
1, 0, 1, 0, 1, 2, 0, 1, 4, 10, 0, 1, 10, 24, 70, 0, 1, 20, 82, 212, 630, 0, 1, 42, 300, 798, 2324, 6930, 0, 1, 84, 894, 3800, 10078, 30188, 90090, 0, 1, 170, 2744, 18186, 51804, 150046, 452724, 1351350, 0, 1, 340, 8594, 71624, 313006, 851692, 2545390, 7695828, 22972950
OFFSET
0,6
COMMENTS
All terms in columns k > 1 are even.
LINKS
FORMULA
A(n,k) = A293960(n,k) - A293960(n,k-1) for k>0, A(n,0) = A000007(n).
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 4, 10;
0, 1, 10, 24, 70;
0, 1, 20, 82, 212, 630;
0, 1, 42, 300, 798, 2324, 6930;
0, 1, 84, 894, 3800, 10078, 30188, 90090;
0, 1, 170, 2744, 18186, 51804, 150046, 452724, 1351350;
...
CROSSREFS
Columns k=0-2 give: A000007, A057427, A167030(n+1).
Row sums give A001147.
Main diagonal gives A293962.
T(2n,n) gives A293963.
Sequence in context: A244128 A016584 A378237 * A378239 A378238 A378240
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 20 2017
STATUS
approved