login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293640
a(n) is the least integer k such that k/Fibonacci(n) > 2/5.
3
0, 1, 1, 1, 2, 2, 4, 6, 9, 14, 22, 36, 58, 94, 151, 244, 395, 639, 1034, 1673, 2706, 4379, 7085, 11463, 18548, 30010, 48558, 78568, 127125, 205692, 332816, 538508, 871324, 1409832, 2281155, 3690986, 5972141, 9663127, 15635268, 25298395, 40933662, 66232057
OFFSET
0,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 2, -1, -2, 2, 1, -3, -1, 3, 0, -2, 1, 2, -1, -1)
FORMULA
G.f.: (x^4 (1 + x) (1 - x + x^2) (1 + x - x^2 - 2 x^3 + x^5 + x^6))/((-1 + x) (-1 + x + x^2) (1 + x + x^2 + x^3 + x^4) (1 - x^2 + x^4 - x^6 + x^8)).
a(n) = a(n-1) + 2 a(n-2) - a(n-3) - 2 a(n-4) + 2 a(n-5) + a(n-6) - 3 a(n-7) - a(n-8) + 3 a(n-9) - 2 a(n-11) + a(n-12) + 2 a(n-13) - a(n-14) - a(n-15) for n >= 16.
a(n) = ceiling(2*Fibonacci(n)/5).
a(n) = A293639(n) + 1 for n > 0.
MATHEMATICA
z = 120; r = 2/5; f[n_] := Fibonacci[n];
Table[Floor[r*f[n]], {n, 0, z}]; (* A293639 *)
Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293640 *)
Table[Round[r*f[n]], {n, 0, z}]; (* A293641 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 14 2017
STATUS
approved