login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293453
Zumkeller numbers k such that sigma(k)/2 is a Zumkeller number.
2
6, 24, 28, 42, 54, 56, 60, 78, 84, 88, 96, 102, 108, 114, 120, 126, 132, 140, 150, 168, 174, 176, 186, 198, 204, 216, 220, 222, 224, 228, 240, 246, 252, 258, 260, 264, 270, 276, 280, 294, 308, 312, 330, 336, 340, 342, 348, 350, 352, 354, 366, 368, 372, 378, 380, 384, 390, 396, 402
OFFSET
1,1
COMMENTS
Subsequence of A083207 (Zumkeller numbers).
Conjecture: Any four consecutive Zumkeller numbers include at least one term of the present sequence (verified for the first 10^5 Zumkeller numbers).
The perfect numbers (A000396) are all trivially in this sequence.
LINKS
EXAMPLE
The fourth Zumkeller number is 24, since sigma(24) = A000203(24) = 60, 60/2 = 30, and the divisors of 24 can be partitioned as 1 + 2 + 3 + 4 + 8 + 12 = 6 + 24 = 30.
In turn, 30 is also a Zumkeller number, as sigma(30)/2 = 72/2 = 36 and 1 + 2 + 3 + 5 + 10 + 15 = 6 + 30 = 36.
Therefore 24 is in this sequence.
But since 36 is not a Zumkeller number at all, 30 is not in this sequence.
MATHEMATICA
zumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x}, ds = Plus@@d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; zn = Select[Range[1000], zumkellerQ] (* a code by T. D. Noe at A083207 *); Select[zn, zumkellerQ[DivisorSigma[1, #]/2] &]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ivan N. Ianakiev, Oct 09 2017
STATUS
approved