|
|
A293339
|
|
Greatest integer k such that k/2^n < 1/e.
|
|
3
|
|
|
0, 0, 1, 2, 5, 11, 23, 47, 94, 188, 376, 753, 1506, 3013, 6027, 12054, 24109, 48218, 96437, 192874, 385749, 771499, 1542998, 3085996, 6171992, 12343985, 24687971, 49375942, 98751885, 197503771, 395007542, 790015084, 1580030168, 3160060337, 6320120674
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(n) = floor(r*2^n), where r = 1/e.
|
|
MATHEMATICA
|
z = 120; r = 1/E;
Table[Floor[r*2^n], {n, 0, z}]; (* A293339 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293340 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293341 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|