login
A293336
The integer k that minimizes |k/2^n - sqrt(1/5)|.
3
0, 1, 2, 4, 7, 14, 29, 57, 114, 229, 458, 916, 1832, 3664, 7327, 14654, 29309, 58617, 117234, 234469, 468937, 937875, 1875750, 3751500, 7502999, 15005998, 30011996, 60023993, 120047985, 240095971, 480191942, 960383883, 1920767767, 3841535534, 7683071068
OFFSET
0,3
LINKS
FORMULA
a(n) = floor(1/2 + r*2^n), where r = sqrt(1/5).
a(n) = A293334(n) if (fractional part of r*2^n) < 1/2, else a(n) = A293335(n).
MATHEMATICA
z = 120; r = Sqrt[1/5];
Table[Floor[r*2^n], {n, 0, z}]; (* A293334 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293335 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293336 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 10 2017
STATUS
approved